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Abstract For more than 50 years, optical biosensors have been used to measure bio-
molecular interactions. The most frequently applied binding model to fit biosensor data
is the simple 1:1 binding model which requires the stabilization of the association phase
to the equilibrium Req and the stabilization of the dissociation phase to the equilibrium
zero. However, due to technical limitations many published biosensor measurements
are finished before these requirements are fulfilled. In the present study, a long term
binding interaction analysis with a monoclonal antibody, namely IgG 2F5 and UG37
a specific antigen with a promising biosensor platform, the Bio-Layer Interferometry,
was performed. Data fitting with the simple 1:1 binding model to the association
phase was inappropriate and the fitted parameters varied with the concentration and
time, which contradicts the theory of the simple 1:1 binding model. Furthermore,
extrapolation of the fits with individual times spans compared to 100 % of the obtained
data systematically underestimated the actual observed binding curve. Interestingly,
an alternative model based on the cumulative distribution function of the log-normal
probability distribution remedied the aforementioned problems allowing KL (which
is the analog to the affinity constant KD) to be estimated. We further demonstrate
that this model fits the biosensor data far better and is essentially less affected by the
stabilization of the association phase to the equilibrium (Req) and the stabilization
of the dissociation phase to the equilibrium zero. Finally, extrapolation with the log-
normal model predicts the actually observed binding curve in a proper manner.
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1 Introduction

Bio-molecular interactions measured with label free optical biosensors have been
established for a wide range of applications, in particular for quality control and
in process development, thus accurate analytical models for data interpretation are
needed [1–3]. However, data interpretation itself is one of the most challenging issues
for deriving reliable results [4]. Routinely, biosensor technologies imply full kinetic
measurements; including estimation of the association rate (ka), the dissociation rate
(kd), the binding affinity (KD), the maximum response (Rmax) and the response at
equilibrium (Req), determined from a fit of the binding data [5]. The time-dependent
binding kinetics are related to specific associations and dissociations, whereas, the
association rate constant describes how fast molecules bind and the dissociation rate
constant describes how fast complexes fall apart. In detail, kinetics determine whether
a certain complex is formed and/or dissociates within a given time span. In contrast,
the time independent affinity constant is a parameter for the strength of a complex,
which is termed the binding strength. Therefore, the affinity determines how much
complex is formed at equilibrium. Eventually, Rmax is the maximum response and Req
is the calculated response at equilibrium that is determined from a fit of the binding
data [6]. In general, a particular binding model has to be used for the correct calcu-
lation of biosensor data to obtain the fitted parameters including the rate and affinity
constants, Rmax and Req. In the vast majority of cases, biosensor data are fitted to a
simple 1:1 binding model in which calculations of the fitted parameters are based on
the concept that association reaches an equilibrium followed by a complete dissocia-
tion [7]. However, it has been repeatedly shown that an extended period of association
time would be required to reach equilibrium [8]. The most commonly applied biosen-
sor techniques are Surface Plasmon Resonance (SPR) and Bio-Layer Interferometry
(BLI) [9]. A considerable disadvantage using SPR is the fact that in standard SPR
the association phase is limited by approximately 100 s (about 150µL sample volume
with a flow rate of 100µL/min) due to technical reasons [10]. Hence, longer mea-
surements can only be performed with additional equipment as it is assumed that the
simple 1:1 interaction model accurately fits both short and long term association phase
although equilibrium is obviously not reached. Thus, studies of long term measure-
ments are demanded to approve the accuracy of the simple 1:1 model. Therefore, we
measured the well studied high-affinity interaction between a monoclonal antibody
(IgG 2F5) immobilized on a disposable optical fibre streptavidin biosensor tip surface
via a biotin–streptavidin reaction followed by interactions with the specific antigen
(UG37) [11]. After attachment of the antigen UG37 to the b-IgG2F5 coated surface,
the thickness of the layer on the surface increased. This increase could be measured
since BLI directly correlates the spectral shift (�λ) with the change in thickness (nm)
of the biological layer on the streptavidin (SA) biosensor tips. Thus, a change in optical
mass thickness of 1 nm results in a 1 nm shift in the interferometry wave pattern [12].
According to this principle, association was detected by a positive shift caused by the
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Fig. 1 Principle of the ForteBio BLI technique: on the left side a single biosensor-tip is shown followed
by a detailed illustration of the analytical technique that analyzes the interference pattern of white light
reflected from two biosensor tip surfaces: a layer of immobilized molecules on the biosensor tip, and an
internal reference layer. Any change in the number of molecules bound to the biosensor tip causes a shift
in the interference pattern that can be measured in real-time. The wavelength shift (�λ) is a direct measure
of the change in thickness of the biological layer as shown on the right side. Unbound molecules and
changes in the refractive index of the surrounding medium do not affect the interference pattern. (Cited
with permission from ForteBio Inc., Menlo Park, CA, USA)

increase in thickness of the layer while dissociation correlated with a negative shift
thus providing the basics for data fitting (Fig. 1). Finally, long term binding interaction
measurements with an association phase up to at least 8,000 s were performed.

However, to our knowledge, analysis of binding data with the cumulative distrib-
ution function of the log-normal probability distribution have not yet been published
and thus, our results demonstrate for the first time the suitability of the log-normal
model as an appropriate data fitting tool for binding interaction studies. Therefore, the
log-normal model was evaluated as an alternative to the simple 1:1 interaction model.
The fitting parameters of both models with different time spans and concentrations
were compared. Additionally, different initial time spans of the fits from both models
were used to compare the extrapolation of the fits.

2 Materials and methods

2.1 Biotinylation of the Antibody (b-IgG2F5) and antigen preparation

Recombinant human monoclonal antibody (IgG2F5) to HIV-1 gp41 epitope ELD-
KWA and recombinant gp140, envelope protein HIV-1 from the HIV clade A strain
92/UG/037, accession number AY494974, terminating after 2F5 epitope (UG37)
was provided by Polymun Scientific GmbH (Klosterneuburg, Austria). Biotinyla-
tion of IgG2F5 was performed with NHS-LC-LC-BIOTIN (Pierce, Rockford, USA)
according to the manufacturer’s protocol. Briefly, IgG2F5 (1,000µg/ml) in phosphate
buffered saline (PBS) was incubated with NHS-LC-LC-BIOTIN in the dark at room
temperature for at least 1 h. Finally, unbound biotin was removed using a PD-10 desalt-
ing column (GE Healthcare, Vienna, Austria).
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2.2 BLI

Octet QK (ForteBio, Menlo Park, CA, USA) was used for BLI studies. Assay was
performed in black 96 well plates (Nunc F96 MicroWell™ Plates, Thermo Fisher
Scientific, Langenselbold, Germany). The total working volume for samples or buffer
was 0.21 ml per well and the rpm setting for each equilibrium, loading, association
and dissociation step was 1,000 rpm. The test was performed at 25 ◦C. Prior to each
assay, streptavidin (SA) biosensor tips (ForteBio) were pre-wetted in 0.21 ml PBS
for at least 10 min followed by equilibration with PBS for 100 s (s = seconds). After-
wards streptavidin (SA) biosensor tips were non-covalently loaded with b-IgG2F5
in PBS (1:100), followed by an additional equilibration step (100 s). Subsequently,
association of b-IgG2F5 with UG37 in a concentration range of c = 1,429, 714.3,
357.1 and 178.6 nM in PBS was conducted. Association at each concentration was
carried out for 8,000 s. Finally, the dissociation was monitored with PBS for 1,500 s.
All measurements were performed in triplicates.

2.3 Simple 1:1 interaction model

The simple 1:1 interaction model as shown in Fig. 2 is described by the following two
formulas [13]:

Rt = kon .c.Rmax

kon .c + kof f
·
(

1 − e−(kon .c+kof f ).t
)

, t ≤ t0 (1)

for the association phase, and

Rt = Rt0 · e−kof f ·(t−t0), t ≥ t0 (2)

for the dissociation phase

Fig. 2 Association and dissociation phase of the simple 1:1 interaction model which describes the stabi-
lization of the association phase to the equilibrium Req and the stabilization of the dissociation phase to the
equilibrium zero of a 1:1 interaction, where one ligand molecule interacts with one analyte molecule
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The terms have the following meaning:
Rt = biosensor response (signal) at time t

Rmax = maximal concentration-independent response

kof f = concentration-independent dissociation rate (s−1)

kon = concentration-independent association constant (M−1s−1)

c = concentration in the solution (M)

Rt0 = initial response for dissociation

The concentration-dependent equilibrium Req and the time independent affinity
constant K D(M) are described by

Req = kon .c.Rmax

kon .c + kof f
= Rmax · c.K D

1 + c.K D
(3)

K D = kon/kof f (4)

The kinetic parameters of the simple 1:1 interaction model were determined by a
global fit to the biosensor responses.

2.4 Log-normal model

As mentioned above, we compare the simple 1:1 interaction model with an alternative
model based on the cumulative distribution function of the log-normal probability
distribution [14]:

Rt = Rmax · (1 − e−c.KL ) · L(t;μ; σ) (5)

Here L denotes the lognormal distribution function defined as

L(t;μ; σ) =
t∫

−∞

1√
2πσ

exp

(
− (ln χ − μ)2

2σ 2

)
dχ (6)

Thereby, Rmax and μ, σ are constants and these terms have the following meaning:

Rt = biosensor response (signal) at time t

Rmax = maximal concentration-independent response

Req = Rmax · (1 − e−c.KL )= concentration-dependent equilibrium

c = concentration in the solution (M)

KL = analogy to K D (M−1)

μ= shape parameter

σ = shape parameter
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Hereby, Req and Rmax have the same meaning as in the simple 1:1 interaction model.
As well as in the simple 1:1 interaction model, the parameters were determined by the
least square method.

2.5 Data fitting, fitted parameters and extrapolation of the fits

Most biosensor measurements terminate before stabilization of the association phase
to Req and the stabilization of the dissociation phase to equilibrium zero. However,
kinetic and affinity constants are calculated from this data. Therefore, we fitted 10 %
(800 s) and 30 % (2,400 s) of the data and compared these fits to 100 % (8,000 s) of
the association data with the Simple 1:1 interaction model and the log-normal model
at different concentrations and scrutinized the effect of the different fits on the fitted
parameters. Extrapolation of the fits was performed for illustrative purpose only to
explain a typical behavior of the models with respect to the considered data.

The fitted parameters of the initial 10 and 30 % of the data from both models were
used to compare different series of the extrapolation of the fits.

Data fitting and extrapolation of the fits were performed with Excel spreadsheets
(Version 2003, Microsoft, Redmond, WA, USA). The individual fit at each concentra-
tion to obtain the fitted parameters were calculated as an average of three independent
measurements.

3 Results

3.1 BLI

Long term association experiments using the well established interaction of
IgG2F5/UG37 based on the BLI platform were performed to evaluate the quality of
the simple 1:1 interaction model in comparison to the log normal concept. Therefore,
SA equilibrated biosensor tips were loaded with the b-IgG2F5, retaining a constant
loading baseline, resulting in a final capture signal between 2.8 and 3.1 nm within at
least 100 s (Fig. 3). These SA biosensor tips were incubated with the specific antigen
(UG37) at different concentrations as described in the materials and methods section
to measure the corresponding association and dissociation profiles. The quality of the
test performance was evaluated carefully to avoid nonspecific interaction of the UG37
antigen with uncoated sensor tips meaning that the streptavidin itself showed no cross
reactivity with the analyte (data not shown). In general, the biotin–streptavidin bond
is known as one of the strongest non-covalent biological interactions and forms very
rapidly, stable complexes in a wide range of pH and temperatures [15].

The interaction of the antigen with the antibody attached on the sensor tips showed
concentration dependent association curves as expected. Furthermore, if the antibodies
were attached once, no dissociation occurred under native conditions. This indicates
that very stable complexes were formed. This phenomenon is not really new and has
been observed repeatedly [16].
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Fig. 3 Typical loading and equilibration curves showing the equilibration step (100 s) with PBS (a), the
loading step with b-IgG2F5 (b) and the reference curve equilibrated and loaded with PBS (c), Simultaneous
measurements of five individual sensor tips

3.2 Data fitting, fitted parameters and extrapolation of the fits

In Table 1 the fitted parameters of the simple 1:1 interaction model at the individual
time spans (800, 2,400 and 8,000 s) and at different concentrations (c = 1,429, 714.3,
357.1 and 178.6 nM) are summarized. The evaluation of kinetic parameters was done
by fitting corresponding data according to the simple 1:1 interaction model at different
time windows for the same data set. The association rate constant (ka) is defined as the
rate of complex formation per second in a 1 molar solution of two reaction partners,
while the dissociation rate constant (kd) indicates the stability of this complex. The
affinity constant KD is calculated by the ratio of kd/ka. As shown, the ka value with
the highest concentration at 800 s is more than three times larger than at 8,000 s and
two times larger than at 2,400 s, whereby this discrepancy is larger the higher the con-
centration. The relative standard deviation (RSD) of the dissociation rate constant (kd )
was 17.7 %, while the RSD was defined as the standard deviation divided by the mean
and multiplied by 100 %. The K D values vary from 0.81 × 10−8 M to 5.91 × 10−8 M
depending on concentration and the defined association time. Additionally, the max-
imum response (Rmax) and the response at equilibrium (Req) determined from the fit
of the binding data are shown. Furthermore, the fitted parameters of the log-normal
model at the individual time spans and at different concentrations are summarized in
Table 2. The parameters μ and σ are mere shape parameters that define the geome-
try of the fitted curve. As shown the RSD of μ and σ is about 11 % whereby these
parameters increase with the shorter the time span. The parameter KL is analogous
to KD and was estimated with 4.52 × 106M−1 independent of the concentration and
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Table 1 Fitted parameters of the simple 1:1 interaction model

Concentration 1,429 nM 714 nM 357 nM 179 nM

Time (s) 800 2,400 8,000 800 2,400 8,000 800 2,400 8,000 800 2,400 8,000

ka (M−1s−1) 2,502 1,363 729 2,713 1,693 887 3,791 2,372 1,267 1,721 1,162 1,299

kd (s−1) × 10−5 4.31 3.24 3.09 3.01

KD (M) × 10−8 1.72 3.16 5.91 1.20 1.92 3.65 0.81 1.30 2.44 1.75 2.59 2.32

Rmax 0.99 1.29 1.59 0.81 1.05 1.38 0.62 0.84 1.15 0.69 0.99 0.88

Req 0.98 1.26 1.52 0.79 1.02 1.31 0.60 0.81 1.08 0.63 0.87 0.78

Kinetic rate constants, affinity constants, Rmax and Req values determined by a global fit to the biosensor data
with the simple 1:1 interaction model for the IgG2F5/UG37 interaction with 800 s (10 % of the data), 2,400 s
(30 % of the data) and 8,000s (100 % of the data) and at different concentrations (c = 1,429, 714.3, 357.1
and 178.6 nM). All parameters represent the mean values of triplicate measurements of each concentration

the defined association time. It is important to note that the Rmax and Req determined
with the log-normal model are rather different from the estimated Rmax and Req with
the simple 1:1 interaction model. In general, the log-normal model fits the binding
curve independent of the association time and concentration in a proper manner. The
only exception depicts the concentration c = 178.6 nM using 10 % of data. In this
case the data fit results in a clearly visible deviation (Tab. 2). The fitted parameters
from Tables 1 and 2 were used for Figs. 4 and 5 to compare the extrapolations of
the fits at different time spans and at different concentrations with both models. The
corresponding fits with full set of data (8,000 s) and extrapolation of the fits to predict
the remaining 90 and 70 % of the association curve are shown in Figs. 4 and 5. These
results demonstrate that the simple 1:1 interaction model at different concentrations is
obviously inappropriate to predict the observed binding curve, while the log-normal
model describes the individual situation more accurately. The log-normal model pro-
vides an excellent fit with full set of data as well as an excellent extrapolation of the
fits which predict the actual observed binding curve. In detail, using 10 and 30 % of
the association time for the extrapolation, the simple 1:1 interaction model (Fig. 4),
at the concentrations c = 1,429, 714.3 and 357.1 nM obviously underestimates the
actual observed binding curve.

In contrast, only for the lowest concentration c = 178.6 nM and using 10 and 30 %
of the data for the extrapolation of the fits, the simple 1:1 interaction model is better
than the log-normal model.

4 Discussion

The present study is focused on a comparison of the established simple 1:1 interaction
model with an alternative model, based on the cumulative distribution function of the
log- normal model. For this approach a long term association phase based on a well
established antibody/antigen interaction, namely IgG2F5/UG37 was used [17,18]. All
measurements were performed with BLI, a promising biosensor platform, developed
by ForteBio with the main focus being to qualify and quantify protein/protein inter-
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Table 2 Fitted parameters of the log-normal model

Concentration 1,429 nM 714 nM 357 nM 179 nM

Time (s) 800 2,400 8,000 800 2,400 8,000 800 2,400 8,000 800 2,400 8,000

μ 7.41 6.65 6.64 7.23 7.34 7.49 8.87 8.39 8.08 6.79 7.58 8.60

σ 2.58 2.22 2.21 1.95 2.01 2.10 2.35 2.19 2.04 0.94 1.24 1.69

KL (1/M) × 106 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52

Rmax 2.12 1.88 1.95 2.12 1.88 1.95 2.12 1.88 1.95 2.12 1.88 1.95

Req 2.49 1.9 1.89 1.63 1.71 1.81 2.31 1.86 1.65 0.34 0.65 1.18

Shape parameters (μ, σ ), KL (which is the analog to the affinity constant KD), Rmax and Req values
determined by fitting with the log-normal model for the IgG2F5/UG37 interaction with 800 s (10 % of the
data), 2,400 s (30 % of the data) and 8,000 s (100 % of the data) and at different concentrations (c = 1,429,
714.3, 357.1 and 178.6 nM). All parameters represent the mean values of triplicate measurements of each
concentration

actions in research and routine applications [19]. In this study, we could illustrate that
data interpretation is still a major topic and therefore the specific rate and affinity
constants calculated from the simple 1:1 interaction model should be interpreted with
caution for various reasons. This is especially in the case of slow kinetics (with respect
to association and dissociation). It should be noted that Req and the stabilization of
the dissociation phase to the equilibrium zero (which are the prerequisites for the cal-
culation of kinetic rate constants) need to be estimated properly. Figure 2 shows the
association and dissociation phases in an ideal situation for the simple 1:1 interaction
model where both the stabilization of the association phase to Req can be observed,
with the stabilization of the dissociation phase to the equilibrium zero also observable
assuming complete binding reversibility. However, in many biosensor experiments
the association phase is terminated before the equilibrium has been reached, mainly
due to technical reasons [8]. In contrast, the used BLI technology the opportunity to
prolong the association phase without any technical modifications [20]. In this study
an association phase of 8,000 s was used. In common SPR experiments the associa-
tion phase is approximately 100fold smaller than in our experiments [21]. The main
objectives of this study were to compare curve fitting and the calculated parameters
with the simple 1:1 interaction model and the log-normal model. Furthermore, the
influence of the selected association time on the fitted parameters and extrapolation of
the fits, to predict the binding curve, were compared. We could demonstrate that the
1:1 model has distinct weaknesses:

1. Data fitting to the association phase was inappropriate (Table 1; Fig. 4.);
2. The kinetic constants varied with concentration and time (Table 1);
3. Extrapolations of the fits were underestimated the actual observed binding curve

(Fig. 4.)

In summary, especially for slow high affinity binding interactions and long term
measurements, the simple 1:1 interaction model may not be the best option. A more
detailed consideration explains this phenomenon: Req and Rmax are essentially depen-
dent on the duration of the measurements. Consequently, the shorter the duration of the
measurements the lower was the computed Req, Rmax, KD and the higher ka . Finally,
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Fig. 4 Data fitting and extrapolations of the fits with the simple 1:1 interaction model for an extended
association (0–8,000 s) and dissociation (8,000–9,500 s) phase for the IgG2F5/UG37 interaction: The black
traces represent the experimental data and the grey traces represent the fits with the 1:1 binding model.
Extrapolations of fits at 10 % of the data (800 s; fitted curves at the left side) 30 % of the data (2,400 s;
fitted curves in the middle) and 100 % of the data (8,000 s; fitted curves at the left side) are shown. The
individual antigen concentrations were 1,428.5 nM (a), 714.3 nM (b), 357.1 nM (c) and 178.6 nM (d). All
curves represent the mean values of triplicate measurements of each concentration

the rate and affinity constants varied, depending on the concentration and duration
of measurement. These obtained results are in contradiction to the definition of the
simple 1:1 interaction model [22]. Due to this circumstance, correct calculation of the
rate and affinity constants with the simple 1:1 interaction model could fail and thus, the
authors considered an alternative model. The cumulative distribution function of the
log-normal probability distribution (as an alternative model) substantially improves
the quality of the data fits. Misfits observed with the 1:1 model were significantly
reduced, the calculated parameters were seen to be quite stable (Table 2) and extrap-
olations of the fits predict the observed binding curves quite well. In conclusion, the
log-normal function seems to be more convenient for fitting interactions which deviate
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Fig. 5 Data fitting and extrapolations of the fits with the log-normal model for an extended association
phase (0–8,000 s) for the IgG2F5/UG37 interaction: The black traces represent the experimental data and
the grey traces represent the fits with log-normal model. Extrapolations of fits at 10 % of the data (800 s; fitted
curves at the left side) 30 % of the data (2,400 s; fitted curves in the middle) and 100 % of the data (8,000 s;
fitted curves at the left side) are shown. The individual antigen concentrations were 1,428.5 nM (a), 714.3 nM
(b), 357.1 nM (c) and 178.6 nM (d). All curves represent the mean values of triplicate measurements of each
concentration

from an optimal binding situation, independent of the selected association time, the
concentration of the analyte and the dissociation process.

Although the fit of the log-normal model describes the response that is directly
observable in a more appropriate way, it is not able to provide information about the
rate constants. However, Req and Rmax have the same meaning in both models and
KL is an analog to K D . Finally, it should be reemphasized that many bio-molecular
interactions will adhere in the simple 1:1 interaction model. However, in this study
we demonstrate that the fitted parameters with the simple 1:1 interaction model can
be affected by the selected association time span and therefore, published kinetic
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constants should be scrutinised critically, particularly when curve fitting is not shown
and/or equilibrium is not reached. The question therefore is whether a good curve
fit and a visual inspection of the binding curve should be a priority instead of still
reporting binding constants. Overall, we could demonstrate that the log-normal model
provides an excellent curve fitting tool for biomolecular interactions. Thus, the paper
presents a new modelling approach to biosensor data and relatively short measurement
intervals are needed to estimate reasonably the Req , Rmax and KL values and the
extrapolations of the fits properly represent the actual observed binding curves (Fig. 5).
Future research will concentrate on the question about estimation of rate constants with
the log-normal model. From the results presented here, we predict the problems to be
most pronounced for high affinity interactions with slow kinetics. These findings have
profound implications in all areas related to studying bio-molecular interactions, using
biosensor technologies.
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